Network without VLANs

In normal operation, when a switch receives a broadcast frame on one of its ports, it forwards the frame out all other ports except the port where the broadcast was received. In the animation in Figure 1, the entire network is configured in the same subnet (172.17.40.0/24) and no VLANs are configured. As a result, when the faculty computer (PC1) sends out a broadcast frame, switch S2 sends that broadcast frame out all of its ports. Eventually the entire network receives the broadcast because the network is one broadcast domain.

Network with VLANs

As shown in the animation in Figure 2, the network has been segmented using two VLANs: Faculty devices are assigned to VLAN 10 and Student devices are assigned to VLAN 20. When a broadcast frame is sent from the faculty computer, PC1, to switch S2, the switch forwards that broadcast frame only to those switch ports configured to support VLAN 10.

The ports that comprise the connection between switches S2 and S1 (ports F0/1), and between S1 and S3 (ports F0/3) are trunks and have been configured to support all the VLANs in the network.

When S1 receives the broadcast frame on port F0/1, S1 forwards that broadcast frame out of the only other port configured to support VLAN 10, which is port F0/3. When S3 receives the broadcast frame on port F0/3, it forwards that broadcast frame out of the only other port configured to support VLAN 10, which is port F0/11. The broadcast frame arrives at the only other computer in the network configured in VLAN 10, which is faculty computer PC4.

When VLANs are implemented on a switch, the transmission of unicast, multicast, and broadcast traffic from a host in a particular VLAN are restricted to the devices that are in that VLAN.